Kalman Filter in Three Ways

Geometric, Probabilistic, and Optimization Perspectives

Zirui Zhang

Cheng Kar-Shun Robotics Institute
The Hong Kong University of Science and Technology

September 21, 2025

- Introduction
- 2 Geometric Perspective: Orthogonal Projection
- 3 Probabilistic Perspective: Bayesian Filtering
- **4** Optimization Perspective: MAP Estimation
- **5** Conclusion

Consider a discrete-time linear Gaussian system with initial condition x_0 and P_0 :

$$x_{k+1} = A_k x_k + B_k u_k + \omega_k, \quad \omega_k \sim \mathcal{N}(0, Q_k)$$
$$y_k = C_k x_k + v_k, \qquad v_k \sim \mathcal{N}(0, R_k)$$

Assumptions:

Introduction

- (A_k, B_k) is controllable and (A_k, C_k) is observable
- $O_k \geq 0, R_k \geq 0, P_0 \geq 0$
- ω_k , v_k and x_0 are mutually uncorrelated
- The future state of the system is conditionally independent of the past states given the current state

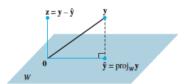
Goal: Find $\hat{x}_{k|k} = \mathbb{E}[x_k|y_{1:k}]$ (MMSE estimator)

Hilbert Space of Random Variables

Key Idea:

- View random variables as vectors in Hilbert space
- Inner product: $\langle \xi, \eta \rangle = \mathbb{E}[\xi \eta]$
- Orthogonality: $\xi \perp \eta \Leftrightarrow \mathbb{E}[\xi \eta] = 0$
- Optimal estimate is orthogonal projection onto observation space

Geometric Interpretation:



State Prediction:

$$\hat{x}_{k|k-1} = \mathbb{E}[x_k \mid y_{1:k-1}]$$

$$= \mathbb{E}[A_{k-1}x_{k-1} + B_{k-1}u_{k-1} + w_{k-1} \mid y_{1:k-1}]$$

$$= A_{k-1}\hat{x}_{k-1|k-1} + B_{k-1}u_{k-1} \quad \text{(since } w_{k-1} \perp y_{1:k-1})$$

Covariance Prediction:

$$\begin{split} P_{k|k-1} &= \operatorname{cov}(x_k - \hat{x}_{k|k-1}) \\ &= \operatorname{cov}[A_{k-1}(x_{k-1} - \hat{x}_{k-1|k-1}) + w_{k-1}] \\ &= A_{k-1} \cdot \operatorname{cov}(x_{k-1} - \hat{x}_{k-1|k-1}) \cdot A_{k-1}^{\top} + 2A_{k-1} \cdot \operatorname{cov}(x_k - \hat{x}_{k|k-1}, \omega_{k-1}) + \operatorname{cov}(w_{k-1}) \\ &= A_{k-1} P_{k-1|k-1} A_{k-1}^{\top} + Q_{k-1} \end{split}$$

Innovation Process

Definition:

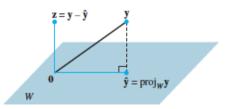
$$e_k = y_k - \hat{y}_{k|k-1}$$

$$= y_k - \operatorname{proj}_{\mathscr{Y}_{k-1}}(y_k)$$

$$= y_k - \operatorname{proj}_{\mathscr{Y}_{k-1}}(C_k x_k + v_k)$$

$$= y_k - C_k \cdot \operatorname{proj}_{\mathscr{Y}_{k-1}}(x_k) - \operatorname{proj}_{\mathscr{Y}_{k-1}}(v_k)$$

$$= y_k - C_k \hat{x}_{k|k-1}$$



Properties:

- Zero Mean: $\mathbb{E}[e_k] = 0$
- White Sequence: $\mathbb{E}[e_k e_i^{\top}] = 0$ for $k \neq j$
- Orthogonality Principle: $\mathbb{E}[e_k y_j^\top] = 0$ for j < k

Measurement Update

State Update:

$$\hat{x}_{k|k} = \operatorname{proj}_{\mathscr{Y}_k}(x_k)$$

$$= \hat{x}_{k|k-1} + K_k e_k$$

$$= \hat{x}_{k|k-1} + K_k (y_k - C_k \hat{x}_{k|k-1})$$

Covariance Update:

$$\begin{split} P_{k|k} &= \operatorname{cov}(x_k - \hat{x}_{k|k}) \\ &= \operatorname{cov}(x_k - \hat{x}_{k|k-1} - K_k e_k) \\ &= \operatorname{cov}(x_k - \hat{x}_{k|k-1}) - 2K_k \operatorname{cov}(x_k - \hat{x}_{k|k-1}, e_k) + K_k \operatorname{cov}(e_k) K_k^\top \\ &= \operatorname{cov}(x_k - \hat{x}_{k|k-1}) - 2K_k \operatorname{cov}(x_k - \hat{x}_{k|k-1}, y_k - C_k \hat{x}_{k|k-1}) + K_k \operatorname{cov}(y_k - C_k \hat{x}_{k|k-1}) K_k^\top \\ &= P_{k|k-1} - K_k C_k P_{k|k-1} - P_{k|k-1} C_k^\top K^\top + K_k (C_k P_{k|k-1} C_k^\top + R_k) K_k^\top \end{split}$$

Kalman Gain Derivation

Optimal Kalman Gain:

$$\frac{\partial \text{tr}(P_{k|k})}{\partial K_k} = -2P_{k|k-1}C_k^{\top} + 2K_k(C_k P_{k|k-1}C_k^{\top} + R_k) = 0$$
$$K_k = P_{k|k-1}C_k^{\top}(C_k P_{k|k-1}C_k^{\top} + R_k)^{-1}$$

Covariance Derivation:

$$P_{k|k} = P_{k|k-1} - K_k C_k P_{k|k-1} = (P_{k|k-1}^{-1} + C_k^{\top} R_k^{-1} C_k)^{-1}$$

$$p(x_{k}|y_{1:k}, u_{1:k})$$

$$= p(x_{k}|y_{k}, y_{1:k-1}, u_{1:k})$$

$$= \frac{p(y_{k}|x_{k}, y_{1:k-1}, u_{1:k}) \cdot p(x_{k}|y_{1:k-1}, u_{1:k})}{p(y_{k}|y_{1:k-1}, u_{1:k})}$$

$$= \eta \cdot p(y_{k}|x_{k}) \cdot p(x_{k}|y_{1:k-1}, u_{1:k})$$

$$= \eta \cdot p(y_{k}|x_{k}) \cdot \int p(x_{k}, x_{k-1}|y_{1:k-1}, u_{1:k}) dx_{k-1}$$

$$= \eta \cdot p(y_{k}|x_{k}) \cdot \int p(x_{k}|x_{k-1}, y_{1:k-1}, u_{1:k}) \cdot p(x_{k-1}|y_{1:k-1}, u_{1:k}) dx_{k-1}$$

$$= \eta \cdot \underbrace{p(y_{k}|x_{k})}_{\text{observation model}} \cdot \underbrace{\int p(x_{k}|x_{k-1}, u_{k})}_{\text{previous belief}} \cdot \underbrace{p(x_{k-1}|y_{1:k-1}, u_{1:k-1})}_{\text{previous belief}} dx_{k-1}$$

Prediction Step: Gaussian Propagation

$$p(x_k|y_{1:k}, u_{1:k}) = \eta \cdot \mathcal{N}(y_k; C_k x_k, R_k) \cdot \int \mathcal{N}(x_k; A_{k-1} x_{k-1} + B_{k-1} u_{k-1}, Q_{k-1}) \cdot \mathcal{N}(x_{k-1}; \hat{x}_{k-1}, P_{k-1}) dx_{k-1}$$

Predicted Mean:

$$\hat{x}_{k|k-1} = \mathbb{E}[A_{k-1}x_{k-1} + B_{k-1}u_{k-1} + w_{k-1}]$$

$$= A_{k-1}\mathbb{E}[x_{k-1}] + B_{k-1}u_{k-1} + \mathbb{E}[w_{k-1}]$$

$$= A_{k-1}\hat{x}_{k-1} + B_{k-1}u_{k-1}$$

Predicted Covariance:

$$P_{k|k-1} = \operatorname{cov}[A_{k-1}x_{k-1} + B_{k-1}u_{k-1} + w_{k-1}]$$

$$= \operatorname{cov}[A_{k-1}x_{k-1}] + \operatorname{cov}[w_{k-1}]$$

$$= A_{k-1}\operatorname{cov}[x_{k-1}]A_{k-1}^{\top} + Q_{k-1}$$

$$= A_{k-1}P_{k-1}A_{k-1}^{\top} + Q_{k-1}$$

September 21, 2025

Update Step: Gaussian Product

$$p(x_k|y_{1:k}, u_{1:k}) = \eta \cdot \mathcal{N}(y_k; C_k x_k, R_k) \cdot \mathcal{N}(x_k; \hat{x}_{k|k-1}, P_{k|k-1})$$

Gaussian Product:

$$\mathcal{N}(x; \mu, \Sigma) \propto \mathcal{N}(x; \mu_1, \Sigma_1) \cdot \mathcal{N}(x, \mu_2, \Sigma_2)$$

$$\Sigma^{-1} = \Sigma_1^{-1} + \Sigma_2^{-1}$$
$$\mu = \Sigma(\Sigma_1^{-1}\mu_1 + \Sigma_2^{-1}\mu_2)$$

Posterior Result:

$$\hat{x}_{k|k} = \hat{x}_{k|k-1} + K_k (y_k - C_k \hat{x}_{k|k-1})$$

$$K_k = P_{k|k-1} C_k^{\top} (C_k P_{k|k-1} C_k^{\top} + R)^{-1}$$

$$P_{k|k} = (I - K_k C_k) P_{k|k-1}$$

Maximum A Posteriori Formulation

MAP Estimation:

$$\hat{x}_{k|k} = \arg\max_{x_k} p(x_k \mid y_{1:k})$$

$$= \arg\min_{x_k} \left[-\log p(x_k \mid y_{1:k}) \right]$$

Weighted Least Square:

$$\mathcal{E}(x) = ||A_{k-1}x - b||_{\Sigma}^{2} = x^{\top} A_{k-1}^{\top} \Sigma^{-1} A_{k-1} x - 2b^{\top} \Sigma^{-1} A_{k-1} x + b^{\top} \Sigma^{-1} b$$

$$\nabla \mathcal{E} = 2A_{k-1}^{\top} \Sigma^{-1} A_{k-1} x - 2A_{k-1}^{\top} \Sigma^{-1} b$$

$$\hat{x} = (A_{k-1}^{\top} \Sigma^{-1} A_{k-1})^{-1} A_{k-1}^{\top} \Sigma^{-1} b$$

Posterior Distribution:

$$p(x_k | y_{1:k}) \propto p(y_k | x_k) p(x_k | y_{1:k-1})$$

Assume Gaussian Distributions:

$$p(x_k \mid y_{1:k-1}) = \mathcal{N}(x_k; \hat{x}_{k|k-1}, P_{k|k-1})$$

$$p(y_k \mid x_k) = \mathcal{N}(y_k; C_k x_k, R_k)$$

Negative Log-Posterior:

$$-\log p(x_k \mid y_{1:k}) \propto \frac{1}{2} \|y_k - C_k x_k\|_{R_k^{-1}}^2 + \frac{1}{2} \|x_k - \hat{x}_{k|k-1}\|_{P_{k|k-1}}^2$$
$$= \frac{1}{2} \left\| \begin{bmatrix} C_k \\ I \end{bmatrix} x_k - \begin{bmatrix} y_k \\ \hat{x}_{k|k-1} \end{bmatrix} \right\|_{\Sigma^{-1}}^2$$

where
$$\Sigma = \begin{bmatrix} R_k & 0 \\ 0 & P_{k+k-1} \end{bmatrix}$$
.

Weighted Least Squares Form:

$$A_{k-1} = \begin{bmatrix} C_k \\ I \end{bmatrix}, \quad b = \begin{bmatrix} y_k \\ \hat{x}_{k|k-1} \end{bmatrix}, \quad \Sigma = \begin{bmatrix} R_k & 0 \\ 0 & P_{k|k-1} \end{bmatrix}$$

MAP Estimate:

$$\hat{x}_{k|k} = \left(A_{k-1}^{\top} \Sigma^{-1} A_{k-1}\right)^{-1} A_{k-1}^{\top} \Sigma^{-1} b$$

$$= \left(C_{k}^{\top} R_{k}^{-1} C_{k} + P_{k|k-1}^{-1}\right)^{-1} \left(C_{k}^{\top} R_{k}^{-1} y_{k} + P_{k|k-1}^{-1} \hat{x}_{k|k-1}\right)$$

Using Matrix Inversion Lemma:

$$\hat{x}_{k|k} = \left(C_k^{\top} R_k^{-1} C_k + P_{k|k-1}^{-1}\right)^{-1} \left(C_k^{\top} R_k^{-1} y_k + P_{k|k-1}^{-1} \hat{x}_{k|k-1}\right)$$

$$= \hat{x}_{k|k-1} + P_{k|k-1} C_k^{\top} (C_k P_{k|k-1} C_k^{\top} + R_k)^{-1} (y_k - C_k \hat{x}_{k|k-1})$$

Proof:

$$\left(C_k^{\top} R_k^{-1} C_k + P_{k|k-1}^{-1}\right)^{-1} C_k^{\top} R_k^{-1} = P_{k|k-1} C_k^{\top} (C_k P_{k|k-1} C_k^{\top} + R_k)^{-1}$$

This shows the equivalence between the MAP solution and the Kalman update.

Theoretical Insights and Extensions

Key Insights:

- Geometric: Reveals orthogonality principle and innovation process
- **Probabilistic**: Shows optimality under Gaussian assumptions
- Optimization: Connects to weighted least squares and regularization

Unified Algorithm: All approaches yield the same recursive equations:

time update
$$\begin{cases} \hat{x}_{k|k-1} = A_{k-1}\hat{x}_{k-1|k-1} \\ P_{k|k-1} = A_{k-1}P_{k-1|k-1}A_{k-1}^{\top} + Q \end{cases}$$
 measurement update
$$\begin{cases} K_k = P_{k|k-1}C_k^{\top}(C_kP_{k|k-1}C_k^{\top} + R)^{-1} \\ \hat{x}_{k|k} = \hat{x}_{k|k-1} + K_k(y_k - C_k\hat{x}_{k|k-1}) \\ P_{k|k} = (I - K_kC_k)P_{k|k-1} \end{cases}$$

Extensions:

- Nonlinear systems: EKF, UKF, particle filters
- Non-Gaussian noise: robust Kalman filters

Thank you for listening!

Zirui Zhang