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System Model and Assumptions

Consider a discrete-time linear Gaussian system with initial condition x0 and P0:

xk+1 = Akxk +Bkuk +ωk, ωk ∼N (0,Qk)

yk = Ckxk +νk, νk ∼N (0,Rk)

Assumptions:

• (Ak,Bk) is controllable and (Ak,Ck) is observable

• Qk ⪰ 0,Rk ⪰ 0,P0 ⪰ 0

• ωk, νk and x0 are mutually uncorrelated

• The future state of the system is conditionally independent of the past states given
the current state

Goal: Find x̂k|k = E[xk|y1:k] (MMSE estimator)
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Hilbert Space of Random Variables

Key Idea:

• View random variables as vectors in Hilbert space

• Inner product: 〈ξ,η〉 = E[ξη]

• Orthogonality: ξ⊥ η⇔ E[ξη] = 0

• Optimal estimate is orthogonal projection onto observation space

Geometric Interpretation:
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Time Update

State Prediction:

x̂k|k−1 = E[xk | y1:k−1]

= E[Ak−1xk−1 +Bk−1uk−1 +wk−1 | y1:k−1]

= Ak−1x̂k−1|k−1 +Bk−1uk−1 (since wk−1 ⊥ y1:k−1)

Covariance Prediction:

Pk|k−1 = cov(xk − x̂k|k−1)

= cov[Ak−1(xk−1 − x̂k−1|k−1)+wk−1]

= Ak−1 ·cov(xk−1 − x̂k−1|k−1) ·A⊤
k−1 +2Ak−1 ·cov(xk − x̂k|k−1,ωk−1)+cov(wk−1)

= Ak−1Pk−1|k−1A⊤
k−1 +Qk−1

HKUST Kalman Filter in Three Ways September 21, 2025 5 / 17



Introduction Geometric Perspective: Orthogonal Projection Probabilistic Perspective: Bayesian Filtering Optimization Perspective: MAP Estimation Conclusion

Innovation Process

Definition:

ek = yk − ŷk|k−1

= yk −projYk−1
(yk)

= yk −projYk−1
(Ckxk +νk)

= yk −Ck ·projYk−1
(xk)−projYk−1

(νk)

= yk −Ckx̂k|k−1

Properties:

• Zero Mean: E[ek] = 0

• White Sequence: E[eke⊤j ] = 0 for k ̸= j

• Orthogonality Principle: E[eky⊤j ] = 0 for j < k
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Measurement Update

State Update:

x̂k|k = projYk
(xk)

= x̂k|k−1 +Kkek

= x̂k|k−1 +Kk(yk −Ckx̂k|k−1)

Covariance Update:

Pk|k = cov(xk − x̂k|k)

= cov(xk − x̂k|k−1 −Kkek)

= cov(xk − x̂k|k−1)−2Kkcov(xk − x̂k|k−1,ek)+Kkcov(ek)K⊤
k

= cov(xk − x̂k|k−1)−2Kkcov(xk − x̂k|k−1,yk −Ckx̂k|k−1)+Kkcov(yk −Ckx̂k|k−1)K⊤
k

= Pk|k−1 −KkCkPk|k−1 −Pk|k−1C⊤
k K⊤+Kk(CkPk|k−1C⊤

k +Rk)K⊤
k
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Kalman Gain Derivation

Optimal Kalman Gain:

∂tr(Pk|k)

∂Kk
=−2Pk|k−1C⊤

k +2Kk(CkPk|k−1C⊤
k +Rk) = 0

Kk = Pk|k−1C⊤
k (CkPk|k−1C⊤

k +Rk)−1

Covariance Derivation:

Pk|k = Pk|k−1 −KkCkPk|k−1 = (P−1
k|k−1 +C⊤

k R−1
k Ck)−1
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Bayesian Filtering Framework

p(xk|y1:k,u1:k)

= p(xk|yk,y1:k−1,u1:k)

= p(yk|xk,y1:k−1,u1:k) ·p(xk|y1:k−1,u1:k)

p(yk|y1:k−1,u1:k)

= η ·p(yk|xk) ·p(xk|y1:k−1,u1:k)

= η ·p(yk|xk) ·
∫

p(xk,xk−1|y1:k−1,u1:k) dxk−1

= η ·p(yk|xk) ·
∫

p(xk|xk−1,y1:k−1,u1:k) ·p(xk−1|y1:k−1,u1:k) dxk−1

= η · p(yk|xk)︸ ︷︷ ︸
observation model

·
∫

p(xk|xk−1,uk)︸ ︷︷ ︸
motion model

·p(xk−1|y1:k−1,u1:k−1)︸ ︷︷ ︸
previous belief

dxk−1
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Prediction Step: Gaussian Propagation

p(xk|y1:k,u1:k) = η·N (yk;Ckxk,Rk)·
∫

N (xk;Ak−1xk−1+Bk−1uk−1,Qk−1)·N (xk−1; x̂k−1,Pk−1) dxk−1

Predicted Mean:
x̂k|k−1 = E[Ak−1xk−1 +Bk−1uk−1 +wk−1]

= Ak−1E[xk−1]+Bk−1uk−1 +E[wk−1]

= Ak−1x̂k−1 +Bk−1uk−1

Predicted Covariance:

Pk|k−1 = cov[Ak−1xk−1 +Bk−1uk−1 +wk−1]

= cov[Ak−1xk−1]+cov[wk−1]

= Ak−1cov[xk−1]A⊤
k−1 +Qk−1

= Ak−1Pk−1A⊤
k−1 +Qk−1
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Update Step: Gaussian Product

p(xk|y1:k,u1:k) = η ·N (yk;Ckxk,Rk) ·N (xk; x̂k|k−1,Pk|k−1)

Gaussian Product:
N (x;µ,Σ) ∝N (x;µ1,Σ1) ·N (x,µ2,Σ2)

Σ−1 =Σ−1
1 +Σ−1

2

µ=Σ(Σ−1
1 µ1 +Σ−1

2 µ2)

Posterior Result:

x̂k|k = x̂k|k−1 +Kk(yk −Ckx̂k|k−1)

Kk = Pk|k−1C⊤
k (CkPk|k−1C⊤

k +R)−1

Pk|k = (I −KkCk)Pk|k−1
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Maximum A Posteriori Formulation

MAP Estimation:

x̂k|k = argmax
xk

p(xk | y1:k)

= argmin
xk

[− logp(xk | y1:k)
]

Weighted Least Square:

E (x) = ||Ak−1x−b||2Σ = x⊤A⊤
k−1Σ

−1Ak−1x−2b⊤Σ−1Ak−1x+b⊤Σ−1b

∇E = 2A⊤
k−1Σ

−1Ak−1x−2A⊤
k−1Σ

−1b

x̂ = (A⊤
k−1Σ

−1Ak−1)−1A⊤
k−1Σ

−1b
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MAP as Weighted Least Squares

Posterior Distribution:

p(xk | y1:k) ∝ p(yk | xk)p(xk | y1:k−1)

Assume Gaussian Distributions:

p(xk | y1:k−1) =N (xk; x̂k|k−1,Pk|k−1)

p(yk | xk) =N (yk;Ckxk,Rk)

Negative Log-Posterior:

− logp(xk | y1:k) ∝ 1

2
∥yk −Ckxk∥2

R−1
k
+ 1

2
∥xk − x̂k|k−1∥2

P−1
k|k−1

= 1

2

∥∥∥∥[
Ck

I

]
xk −

[
yk

x̂k|k−1

]∥∥∥∥2

Σ−1

where Σ=
[

Rk 0
0 Pk|k−1

]
.
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MAP Solution

Weighted Least Squares Form:

Ak−1 =
[

Ck

I

]
, b =

[
yk

x̂k|k−1

]
, Σ=

[
Rk 0
0 Pk|k−1

]
MAP Estimate:

x̂k|k =
(
A⊤

k−1Σ
−1Ak−1

)−1
A⊤

k−1Σ
−1b

=
(
C⊤

k R−1
k Ck +P−1

k|k−1

)−1 (
C⊤

k R−1
k yk +P−1

k|k−1x̂k|k−1

)

HKUST Kalman Filter in Three Ways September 21, 2025 14 / 17



Introduction Geometric Perspective: Orthogonal Projection Probabilistic Perspective: Bayesian Filtering Optimization Perspective: MAP Estimation Conclusion

Equivalence Proof

Using Matrix Inversion Lemma:

x̂k|k =
(
C⊤

k R−1
k Ck +P−1

k|k−1

)−1 (
C⊤

k R−1
k yk +P−1

k|k−1x̂k|k−1

)
= x̂k|k−1 +Pk|k−1C⊤

k (CkPk|k−1C⊤
k +Rk)−1(yk −Ckx̂k|k−1)

Proof: (
C⊤

k R−1
k Ck +P−1

k|k−1

)−1
C⊤

k R−1
k = Pk|k−1C⊤

k (CkPk|k−1C⊤
k +Rk)−1

This shows the equivalence between the MAP solution and the Kalman update.
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Theoretical Insights and Extensions

Key Insights:
• Geometric: Reveals orthogonality principle and innovation process
• Probabilistic: Shows optimality under Gaussian assumptions
• Optimization: Connects to weighted least squares and regularization

Unified Algorithm: All approaches yield the same recursive equations:

time update

{
x̂k|k−1 = Ak−1x̂k−1|k−1

Pk|k−1 = Ak−1Pk−1|k−1A⊤
k−1 +Q

measurement update


Kk = Pk|k−1C⊤

k (CkPk|k−1C⊤
k +R)−1

x̂k|k = x̂k|k−1 +Kk(yk −Ckx̂k|k−1)

Pk|k = (I −KkCk)Pk|k−1

Extensions:
• Nonlinear systems: EKF, UKF, particle filters
• Non-Gaussian noise: robust Kalman filters
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Thank you for listening !

Zirui Zhang
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