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Lagrangian Multiplier
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Optimization with Equality Constraints

Consider an optimization problem with equality constraints:
m}nf(x) subjectto  hj(x) =0

how to characterize the necessary conditions for the optimal solution x* 2
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grangian Multiplier
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Geometric Insight

Consider a quadratic objective function with one linear equality constraint:

rr)}iynx2 +) subjectto x+2y=5

Optimal Solution Non-Stationary Point Non-Feasible Point
(Stationary and Feasil (Feasible but VL 0] (Not on constraint)

Vf(x*) must lie within the linear subspace spanned by {V h;(x*)}; otherwise, the
function value could be further decreased by moving along a feasible direction.
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grangian Multiplier
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Geometric Insight (cont.)

Vf(x*) must lie in the space spanned by {V/;(x*)}. This means there exist multipliers
{v;.‘} such that:

VF(x™) + ) viVhi(x") =0
i

Optimal Solution Non-Stationary Point Non-Feasible Point
(Stationary and Feasible) (Feasible but VL = 0) (Not on constraint)

natraint. x4 2y =5
@ optimal point (1.0, 20)
v
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Lagrangian Multiplier
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Lagrangian Function and Optimality Conditions

We introduce the Lagrangian function as a tool to characterize optimality:

Lxv)=f0)+Y_vihj(x)
J

The necessary conditions for optimality can be expressed as stationarity of the
Lagrangian:

Vi = Vf(x*) +X,;v} Vh(x*) =0
VL v ) =0 —
VoL = 1., hi(x"),...]T =0
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Duality and Uzawa’s Method

A Min-Max Interpretation

The Lagrangian function also leads to a powerful dual interpretation:

[, hjx)=0

max.Z(x,v) = )
v oo, otherwise

The original constrained problem is equivalent to the following min-max problem:

minf(x), s.t. hj(x) =0 <= minmax.Z(x,V)
X X v
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Duality and Uzawa’s Method

The Dual Problem and Weak Duality

Solution for min, max, Z (x, v) may be non-continuous, but solution for
max, min, % (x,v) is easy if £ (x, v) is tractable. We can form the dual problem by
swapping the order of the min and the max:

maxd(v) = maxmin Z(x,v) < minmax.Z (x, v)
v v X X v

Under some conditions, equality holds, which means strong duality holds.
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Duality and Uzawa’s Method

Uzawa’s Method (Dual Ascent)

The gradient of the dual function can be computed as:
Vdw) = hix*(v)] where x*(v)= argmgnf (x,v)

This leads to Uzawa’s Method:

©® Minimization (x-step):

Xk = argminﬁ(x,vk)
X

® Ascent (v-step):

k+1 k

v — k4 gk pikh

where a* > 0 is the step size.
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Karush-Kuhn-Tucker (KKT) Conditions
€000

General Constrained Optimization

Consider a general optimization problem with equality and inequality constraints:

rngnf(x)
s.t. gi(x) <0
hj(x) =0

The question does not change: how to characterize the necessary conditions for the
optimal solution x* ?
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Karush-Kuhn-Tucker (KKT) Conditions
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Geometric Insight

Challenge:

@ Directionality: On the boundary, Vg; points towards the exterior of the feasible
region. To prevent f from pushing the point into an infeasible area, Vf must have a
component opposite to Vg; = ;= 0.

® Activity Identification: The optimum may lie in the interior of the region with
gi <0 or on the boundary with g; =0 = pu;g;=0.
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Karush-Kuhn-Tucker (KKT) Conditions
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Summary

© Stationarity: 0 € 0,[f(x) + ¥; pigi(x) + X vjh;(x)]
® Complementary Slackness: p;g;(x) =0

® Primal Feasibility: g;(x) <0, h;j(x) =0

@ Dual Feasibility: y; =0
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Thank you for listening !

Zirui Zhang
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