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Unconstrained Optimization

Consider a smooth and twice-differentiable unconstrained optimization problem:

min
x

f (x)

Descent methods provide an iterative solution:

xk+1 = xk +αk ·dk

where dk is the direction, and αk is the step size.
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Newton’s Method

By second-order Taylor expansion,

f (x) ≈ f (xk)+∇f (xk)⊤(x−xk)+ 1

2
(x−xk)⊤∇2f (xk)(x−xk)

Minimizing quadratic approximation,

∇2f (xk)(x−xk)+∇f (xk) = 0

For ∇2f (xk) ≻ 0,

xk+1 = xk − [∇2f (xk)]−1∇f (xk)

Courtesy: Ardian Umam

HKUST Limited-memory BFGS Method September 22, 2025 4 / 22



Introduction Quasi-Newton Methods BFGS Method L-BFGS Method

Damped Newton Method

For ∇2f (xk)⊁ 0, the direction dk cannot be directly solved from ∇2f (xk)dk =−∇f (xk). In
such cases, a PD matrix Mk must be constructed to approximate the Hessian.

If the function is convex, ∇2f (xk) may be singular. Adding a regularization term ensures
positive definiteness:

Mk =∇2f (xk)+λI

λ> 0 starts small and grows until Cholesky decomposition works.

If the function is nonconvex, ∇2f (xk) may be indefinite. To handle this, the
Bunch-Kaufman decomposition is applied to obtain LD̃L⊤ and D̃:

Mk = LD̃L⊤

Finally, direction is solved from Mkdk =−∇f (xk).

HKUST Limited-memory BFGS Method September 22, 2025 5 / 22



Introduction Quasi-Newton Methods BFGS Method L-BFGS Method

Practical Newton Method

Moreover, we can select αk by backtracking line search to ensure sufficient decrease in
the objective function, satisfying the Armijo condition:

f (xk +αkdk) ≤ f (xk)+ c1 ·αk∇f (xk)⊤dk

where c1 ∈ (0,1) is a small constant.

Courtesy: Cornell University
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Newton’s Method: Limitations

• High Cost: Computing the Hessian and its
inverse requires O (n3) operations, impractical
for large problems.

• Indefinite Hessian: In nonconvex cases, the
Hessian may lead to steps toward saddle points.

• Ill-Conditioning: Poorly conditioned Hessians
amplify errors and hinder convergence.

• Inaccurate Model: Local quadratic
approximations may fail for complex functions,
causing inefficiency or divergence.
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Quasi-Newton Approximation

Newton Approximation:

f (x) ≈ f (xk)+ (x−xk)⊤gk + 1

2
(x−xk)⊤Hk(x−xk)

Hkdk =−gk

Quasi-Newton Approximation:

f (x) ≈ f (xk)+ (x−xk)⊤gk + 1

2
(x−xk)⊤Bk(x−xk)

Bkdk =−gk

The matrix Bk should:
• Avoid full second-order derivatives.
• Have a closed-form solution for linear equations.
• Retain first-order curvature information.
• Preserve the descent direction.
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Descent Direction:

Search direction dk should make an acute angle with the negative gradient:

(gk)⊤dk =−(gk)⊤(Bk)−1gk < 0

Bk must be positive definite (PD) since for all non-negative gk, (gk)⊤(Bk)−1gk > 0.

Courtesy: Active Calculus
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Curvature Information

At the point xk+1, the gradient is gk+1. We want Bk+1 to satisfy:

Bk+1(xk+1 −xk) ≈ gk+1 −gk

Bk+1sk = yk
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The Optimal Bk+1?

Infinitely many Bk+1 satisfy the secant condition. To choose the best one, we define the
following weighted least square problem:

min
B

∥B−Bk∥2
W subject to B = B⊤,Bsk = yk

In BFGS, the weight matrix is selected as:

W =
∫ 1

0
∇2f [(1−τ)xk +τxk+1]dτ
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Closed-form Solution for Bk+1

To derive the optimal Bk+1, we construct the Lagrangian function:

L (B,Λ) = 1

2
∥B−Bk∥2

W + tr
[
Λ⊤

(
Bsk −yk

)]
Taking the derivative of the Lagrangian with respect to B and setting it to zero gives:

∂L

∂B
= W(B−Bk)W+Λ(sk)⊤ = 0

Rearranging the terms, we express B as:

B = Bk −W−1Λ(sk)⊤W−1
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Closed-form Solution for Bk+1 (cont.)

Substituting this expression into the secant condition Bsk = yk, we obtain:(
Bk −W−1Λ(sk)⊤

)
sk = yk

Solving forΛ, we find:

Λ= W
(
yk −Bksk

)(
(sk)⊤W−1sk

)−1

Finally, substitutingΛ back, the closed-form solution for Bk+1 is:

Bk+1 = Bk + yk(yk)⊤

(sk)⊤yk
− Bksk(Bksk)⊤

(sk)⊤Bksk
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BFGS Update Rules

Given the initial value B0 = I, the updates are performed iteratively:

Bk+1 = Bk + yk(yk)⊤

(sk)⊤yk
− Bksk(Bksk)⊤

(sk)⊤Bksk

where:
sk = xk+1 −xk, yk = gk+1 −gk

For computational efficiency, we often work with the inverse of Bk directly:

Ck+1 =
(

I − sk(yk)⊤

(sk)⊤yk

)
Ck

(
I − yk(sk)⊤

(sk)⊤yk

)
+ sk(sk)⊤

(sk)⊤yk
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Guaranteeing PD of Bk+1

To ensure that Bk+1 remains positive definite (PD), the following curvature condition
must hold:

(yk)⊤sk > 0

For any nonzero vector z, using the Cauchy-Schwarz inequality:

z⊤Bk+1z = z⊤Bkz+ (z⊤yk)2

(yk)⊤sk
− (z⊤Bksk)2

(sk)⊤Bksk

≥ z⊤Bkz(sk)⊤Bksk − (z⊤Bksk)2

(sk)⊤Bksk
≥ 0

Equalities hold only when z⊤yk = 0 and z ∥ sk. Given that (yk)⊤sk > 0, these conditions
cannot hold simultaneously. Therefore, if Bk ≻ 0, it follows that Bk+1 ≻ 0.
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Guranteeing (yk)⊤sk > 0

Armijo Condition (AC) cannot gurantee curvature, we need curvature condition (CC):

(dk)⊤∇f (xk +αkdk) ≥ c2 · (dk)⊤∇f (xk)

Typically, c1 = 10−4,c2 = 0.9.

Courtesy: Ján Kopačka
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Lewis-Overton Line Search

The Lewis-Overton line search is a sophisticated backtracking line search designed
specifically for quasi-Newton methods:

1 Given search direction dk, current point xk and gradient gk

2 Initialize trial step α := 1, αl := 0, αr :=+∞
3 Repeat

1 Update bounds:
• If AC(α) fails, set αr :=α
• Else if CC(α) fails, set αl :=α
• Else, accept α and break

2 Update α:
• If αr <+∞, set α := (αl +αr)/2
• Else, set α := 2 ·αl

3 Ensure α ∈ [αmin,αmax]
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Cautious Update

Sometimes, when line search is inexact or the function is poorly conditioned,
(yk)⊤sk > 0 cannot gurantee. To ensure numerical stability and maintain the PD Hessian
approximation, L-BFGS employs a cautious update strategy:

• Skip Update: If the curvature condition (yk)⊤sk > ϵ|sk|2 is not satisfied, where ϵ is a
small positive constant (e.g., 10−6), skip the update for this iteration: Bk+1 = Bk.

• Powell’s Damping: If the curvature condition (yk)⊤sk ≥ η(sk)⊤Bksk is not satisfied,
where η is a small positive constant (e.g., 0.2 or 0.25),

ỹk = θyk + (1−θ)Bksk, θ = (1−η) · (sk)⊤Bksk

(sk)⊤Bksk − (yk)⊤sk

Cautious updates guaranteed to have its iterates converge to a critical point if the
function has bounded sublevel sets and a Lipschitz continuous gradient.
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Two-Loop Recursion

L-BFGS uses a two-loop recursion to compute the search direction without explicitly
forming the Hessian approximation. The algorithm maintains a history of the most

recent m pairs (si,yi)
k−1
i=k−m, where typically m is between 5 and 20.

1 Initialize an empty array A of length m, d = gk

2 For i = k−1,k−2, . . . ,k−m:
1 A i+m−k := 〈si,d〉/〈si,yi〉
2 d := d−A i+m−kyi

3 d := d · 〈sk−1,yk−1〉/〈yk−1,yk−1〉
4 For i = k−m,k−m+1, . . . ,k−1:

1 a := 〈yi,d〉/〈si,yi〉
2 d := d+si(A i+m−k −a)

5 Return d

This approach reduces the storage requirement from O (n2) to O (mn) and the
computational cost per iteration from O (n2) to O (mn).
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Algorithm Summary

The complete L-BFGS algorithm with cautious update and Lewis-Overton line search:

1 Initialize x0, g0 :=∇f (x0), choose m

2 For k = 0,1,2, . . . until convergence:
1 Compute search direction: dk using L-BFGS two-loop recursion
2 Find step size αk using Lewis-Overton line search
3 Update: xk+1 = xk +αkdk

4 Compute sk = xk+1 −xk, yk =∇f (xk+1)−∇f (xk)
5 Apply cautious update to ({sk}, {yk})
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Open Source Implementation

• https://github.com/chokkan/liblbfgs

• https://github.com/ZJU-FAST-Lab/LBFGS-Lite

• https://github.com/yixuan/LBFGSpp

• https://github.com/hjmshi/PyTorch-LBFGS
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Thank you for listening !

Zirui Zhang
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