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Introduction
°

Problem Formulation

Consider a discrete-time linear system:
Xp+1 = ApXn + Buup

Quadratic cost function:

1 1
min J= Z x ann+2u Ryuy +2xNQNxN

X1:N, U1:N-1
~ - _’_/
running cost terminal cost

Assumptions:
* (A, By) is controllable and (4,,, C,;) is observable
* Qu=0,R,=0,Qn =0
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Indirect Shooting: PMP Perspective
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Problem Formulation and Optimality Conditions

Consider the deterministic discrete-time optimal control problem:

N-1
min Y (xp, tn) + lp(xn)
XN ULN-1

S.t. Xp+1 = f(xn, Up)
un€euU

The first-order necessary conditions for optimality can be derived using:

¢ The Lagrangian framework (special case of KKT conditions)

¢ Pontryagin’s Minimum Principle (PMP)

HKUST Linear Quadratic Regulator in Three Ways

4/18




Indirect Shooting: PMP Perspective
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Lagrangian Formulation

Form the Lagrangian:

N-1
L= Z 1(xn, un) + /1;+1(f(xn: Un) — Xp+1) + Ip(XN)
n=1

Define the Hamiltonian:
H(xp, tup, Aps1) = Wy, up) + /1;lr+1f(xny Un)

Rewrite the Lagrangian using the Hamiltonian:

N-1
L=H(x, un, A2) + | Y H(n tny Ans1) = Ay Xn | + Ip(n) = A
n=2
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Indirect Shooting: PMP Perspective
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Optimality Conditions

Take derivatives with respect to x and A:

oL _OoH Xnt1=f(Xn, Up) —Xpe1 =0
O)Ln = 0/1n n+l1 — n YUn n+l1 —
oL OH 0l of

/’{,T = /l AT = 0
0xy 0x, " 0xn ™lox, "
oL alp T
OxN 6xN N~

For u, we write the minimization explicitly to handle constraints:

Uy =argmin H(x,, u, Ap41)
u

s.t. ue
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Indirect Shooting: PMP Perspective
[eleTe] Yole)

Summary of Necessary Conditions

The first-order necessary conditions can be summarized as:
Xn+1 = VA H(Xp, Un, Ays1)
An = ViH(Xn, Uny Apt1)
Uy = argm&nH(x,,, UAn+1), St.ueuU
Olp

N —
GxN

In continuous time, these become:

=V, H(x,u,A)
A=V, H(x, u )
u=argminH(x, i, A), s.t. ue¥
u
Ol
AMtp) = —
(tr) ox
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Indirect Shooting: PMP Perspective
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Application to LQR Problems

For LQR problems with quadratic cost and linear dynamics:
1
I(xn, up) = E (x; Qnxp + u; Ryuy)

[y
Ip(xn) = szQNxN
fCen, un) = Apxn + Bruy,
The necessary conditions simplify to:
Xnt1 = ApXn+ Bruy,

An= Qnxp+ A—rl;/lnﬂ

AN = QnXN
—R,'B} Any1

Un

This forms a linear two-point boundary value problem.
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Indirect Shooting: PMP Perspective
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Indirect Shooting Algorithm for LQR

Procedure:
@ Make initial guess for control sequence 1.1
® Forward pass: Simulate dynamics to get state trajectory xi.n

©® Backward pass:

* Set terminal costate: Ay = Qnxy
* Compute costate trajectory: 1, = Qux, + A;)Lnﬂ
* Compute control adjustment: Auy, = —R,' B} Ap41 — up

® Line search: Update controls u;, — u, + aAuy,

@ Iterate until convergence
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Direct Approach: QP Perspective
®0

LQR as Quadratic Programming Problem

Assume x; is given, define the decision variable vector and the block-diagonal matrix:

m R, ;
X2 Q
z= U R H= RZ
[ XN | | Qv |
The dynamics constraints can be expressed as
B, -1 uy —A1x

A By -1 X2 0

AN_1 BN_1 -1 XN 0
~ ~~ - —

C d
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Direct Approach: QP Perspective
oe

QP Formulation and KKT Conditions

The LQR problem becomes the QP:
mzin]= %ZTHZ subjectto Cz=d
The Lagrangian of this QP is:
Lz, ) = %ZTHZ+ )LT(CZ— d)

The KKT conditions are:

V.%=Hz+C'A=0

Vi Z=Cz-d=0
This leads to the linear system:
z| _ 0]
A d
We get the exact solution by solving one linear system!
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Riccati Equation Solution
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KKT System Structure for LQR

The KKT system for LQR has a highly structured sparse form, consider an N = 4 case:

R
Q2

B -1
Ap

HKUST

T
Bl
I 4
R, Bl
Ry BI
Q4 -1
B, -I
As By -I
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Riccati Equation Solution
0@000

Deriving the Riccati Recursion

Start from the terminal condition (blue equation):

Quxs—A3=0=> Ay = Quxy

Move to the previous equation (red equation):
Ta _ T _
Rsus +B3 /14 = R3us +B3 Q4x,=0
Substitute x4 = A3x3 + B3ugs:
Ryus + B:;r Q4(A3)C3 + Bsuz) =0

Solve for us:
us=—(Rg + B; QuB3)"'B; Q4As:x3
K
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Riccati Equation Solution
[e]e] Yolo)

Deriving the Riccati Recursion (Cont'd)

Now consider the green equation:

Substitute A4 = Q4x4 and x4 = A3x3 + B3us:
Q33— A3 +Ag Qu(Asxs + Bauz) =0
Substitute uz = —K3x3:
Qsx3 — A3 + Ay Qu(A3x3 — B3Kzx3) =0

Solve for A3:
A3 = (Qs+A3 Qu(As — BsK3)) x5
Py
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Riccati Equation Solution
[e]ele] Yo)

Riccati Recursion Formula

We now have a recursive relationship. Generalizing:

Py =Qn
Ki = (R + By Prs1 Bi) ™' By Prr1 Ak
Py = Qg+ A] Py1 (Ap— BrKp)

This is the celebrated Riccati equation.

The solution process involves:
©® A backward Riccati pass to compute Py and Ky for k=N-1,...,1

® A forward rollout to compute x;.y and u;.y—1 using uy = — Kixg
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Riccati Equation Solution
0000e

Computational Complexity

Naive QP Solution: Treats problem as one big least-squares.
¢ Computational cost: O[N3(n +m)3]

* Must be re-solved from scratch for any change.

Riccati Recursion: Exploits the temporal structure.
¢ Computational cost: O[N(n + m)?]

* Exponentially faster for long horizons (large N).

The Riccati Solution is More Than Just Fast:
¢ It provides a ready-to-use feedback policy: uy = —Kjxi
¢ This policy is adaptive: optimal for any initial state x;, not just a single one.
¢ It enables real-time control by naturally rejecting disturbances.

* And it delivers the exact same optimal solution as the QP.
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Conclusion

Summary

Finite-Horizon Problems
* Use Riccati recursion backward in time
¢ Store gain matrices K

* Apply time-varying feedback

Infinite-Horizon Problems
* Solve algebraic Riccati equation offline
¢ Use constant gain matrix K,
¢ Implement simple state feedback
¢ Algebraic Riccati Equation (ARE):

Poo=0Q+A"PuA— A" PouB(R+ B PuB)"'BT P oA
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Thank you for listening !

Zirui Zhang
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