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Recap
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Problem Formulation

Consider the deterministic discrete-time optimal control problem:

N-1
min Y (xp, tn) + lp(xn)
XN ULN-1 ;=

S.t. Xp+1 = f(xn, Up)
un,€uU

The first-order necessary conditions for optimality can be derived using:

¢ The Lagrangian framework (special case of KKT conditions)

¢ Pontryagin’s Minimum Principle (PMP)
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Lagrangian Formulation

Form the Lagrangian:

N-1
L= Z 1(xn, un) + /1;+1(f(xny Up) — Xp+1) + Ip(XN)
n=1

Define the Hamiltonian:
H(xp, tup, Aps1) = Uy, up) + /1;lr+1f(xny Un)

Rewrite the Lagrangian using the Hamiltonian:
N-1

L=H(x, un, A2) + | Y H(n tny Ans1) = Ay Xn | + Ip(xn) = A
n=2
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Optimality Conditions

Take derivatives with respect to x and A:

oL

oA,
oL

Oxn
oL

OxN

0H

ZO—M

_OH

Oxn
alp
6xN

= Xpt1 = f(%n, Up) — Xps1 =0
ol of
/’{’:l—zan A’n+la /1:1—:0

For u, we write the minimization explicitly to handle constraints:

HKUST

up =argmin H(x,, u, Ayy1)
u

s.t. ue
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Summary of Necessary Conditions

The first-order necessary conditions can be summarized as:
Xn+1 = VA H(Xp, Un, Ays1)
An = ViH(Xn, Uny Apt1)
Uy = argm&nH(xn, UAni1), St.ueuU
Olp

N —
GxN

In continuous time, these become:

=V, H(x,u,A)
A=V, H(x, u )
u=argminH(x, &, 1), s.t. ue%
u
Ol
AMtp) = —
(tr) ox
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Application to LQR Problems

For LQR problems with quadratic cost and linear dynamics:
1
I(xn, up) = E (x;l; Qnxp + u; Ryuy)

It
Ip(xn) = szQNxN
[Cen, un) = Apxn + Bruy,
The necessary conditions simplify to:

Xp+1 = ApXp+ Bplp
An= Qnxp+ A—rl;/lnﬂ
AN = QnxN

_ _p-1pT

un - _Rl’l BnAYH—I

This forms a linear two-point boundary value problem.
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MDP & RL
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Bridging Optimal Control and RL

Markov (Decisi P
Markov Chains ar SOV( ec1s1o; rocess
* Stat
* State space ate space ,
* Acti
* Action space % ction Spa((:ie ,
. Transiti ics PS5,
* System dynamics f(x, un) ransition dynamics P(s'|s, a)
. ¢ Reward function R(s,a, ')
* Cost function I(x, u) and Ig(x) dool
Fi i to maximize V(s,
Find feedback u = K(x) to minimize J(xy, u) ind policy 7 (als) to maximize V(sp, 7)

H
N-1 _ n

J(xo, W) =E | Y. Uy, un) + Ip(xn) Viso,m) =E ,;)Y R(sm an, sni1)
n=0

subject to s,4+1 ~ P(|Sp, an), an ~ w(:I$y),

subject to x,,41 ~ (X, Uy,). . g
) na1 ~ [ Cony Un) where y € [0, 1) is the discount factor.

RL is an adaptive method to solve MDP in the absence of model knowledge.
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Value Function and Action-Value Function

Optimal Control:
¢ Value Function:
N-1
Vix) = ml}n[E Z 1(x, Up) + Ip(xpy) | X0 =x
n=0

¢ Action-Value Function:
QUx, u) =E[I(x, u) + V(X) |x ~ f(x, w)]

Reinforcement Learning:
¢ Value Function:

H
Z Y"R(sn, Qn, Sp+1)

n=0

V() =E So =S, ap ~ 7(:|Sp)

¢ Action-Value Function:
Q" (s,a) =E[R(s,a,8) +yV"(s) | § ~ P(|s,a)]
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Q-Learning
The Scalability Challenge

For discrete, low-dimensional problems with a known model, Optimal Control and
Model-based RL can be solved exactly using Dynamic Programming (DP). But what if...

* The model f(x, u), l(x, u) or P(s|s,a), R(s, a,s') is unknown?
* The state or action space is too large or continuous making DP loops intractable?
* The system is too complex to model accurately?

J

We need model-free, stochastic, and approximate methods.

U

This is the core domain of modern Reinforcement Learning.
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(Tabular) Q-Learning

(Tabular) Q-Learning replace expectation by samples:
* For an state-action pair (s, a) , receive s’ ~ P(§|s, a)
* Consider old estimate Qy (s, @)
* Consider new sample estimate: target(s’) = R(s,a,§') + ymaxy Qi(s', a')
* Incorporate the new estimate into a running average:

Qr+1(5,a) — (1 — @) Qk(s, @) + altarget(s')]

* Q-learning converges to optimal policy even if you're acting suboptimally and is
called off-policy learning.

* Requires sufficient exploration and a learning rate & that decays appropriately:

(o] [e.°]
Y asa=c0 Y ai(sa)<oco
i=0 =0

Courtesy of Pieter Abbeel
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Approximate Q-Learning

Instead of a table, we use a parametrized Q function Qy(s, a) to approximate:

¢ Learning rule:

target(s') = R(s,a,§') + ymax Qp, (s, @)
a/

Ok+1 — O —aVy

1 '\ 2
- s, a) — target(s’ ’
5 (Qo(s, @)~ target(s) ] -
* Practical details:

* Use Huber loss instead of squared loss on Bellman error:

%az for|al<6
Ls(a) = 1 ]
d(lal - 25) otherwise

* Use RMSProp instead of vanilla SGD.
* Itis beneficial to anneal the exploration rate over time.

Courtesy of Pieter Abbeel
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Conclusion

RL as an Adaptive Optimal Control

Common Core: The Evolution:
¢ Value Function ¢ Expectation — Samples
¢ Bellman Equation * Table — Function Approximation
¢ Sequential Decision Making * Exact Solution — Stochastic Optimization

A powerful and adaptive optimal control framework.
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Thank you for listening !

Zirui Zhang
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