Skip to content

Discrete Math Quick Notes

Number Theory

Modular Notation

==Divisibility Notation==

\[ 3\mid12,\ \ 3\nmid7 \]

Euclid’s Division Theorem

\[ a=dq+r \]
Note Name
\(d\) divisor
\(a\) dividend
\(q\) quotient
\(r\) remainder

Quotient Ring

\[ {\mathbf Z}_m=\set{0,1,\cdots,m-1} \]

==Definition==

\[ \forall a,b\in{\mathbf Z}_m \]
\[ a+_mb=(a+b)\bmod{m} \]
\[ a\cdot_mb=(a\cdot b)\bmod m \]

Properties

  • Closure: \(\forall a,b\in{\mathbf Z}_m, a+_mb\in{\mathbf Z}_m,a\cdot_mb\in{\mathbf Z}_m\)
  • Associativity
    • \((a+_mb)+_mc=a+_m(b+_mc)\)
    • \((a\cdot_mb)\cdot_mc=a\cdot_m(b\cdot_mc)\)
  • Commutativity:
    • \(a+_mb=b+_ma\)
    • \(a\cdot_mb=b\cdot_ma\)
  • Distributivity
    • \(a\cdot_m(b+_mc)=(a\cdot_mb)+_m(a\cdot_mc)\)
  • Inverse: \(\forall a\in{\mathbf Z}_m,\exists!b\in{\mathbf Z}_m,a+_mb=0,a\cdot_mb=1\)

Congruences

If

\[ a\equiv b\bmod m, c\in \bf Z \]

Then

\[ a+c\equiv b+c\bmod m \]
\[ ac\equiv bc\bmod m \]

Greatest Common Divisor

\[ \gcd(a,b)=\max(\set{d\in{\mathbf Z} |\ d\mid a, d\mid b}) \]

Euclidean Algorithm

\[ a=bq+r \]
\[ \gcd(a,b)=\gcd(b,r) \]

Bézout’s Theorem

\[ \forall a,b\in{\mathbf Z}^+, \exists s,t\in \bf Z \]
\[ \gcd(a,b)=sa+tb \]

==Extended Euclidean Algorithm==

Example: express \(\gcd(123,111)\) as a linear combination of \(123\) and \(111\)

Step 1: find gcd()

\[123=1\cdot111+12\]
\[111=9\cdot12+3\]
\[12=4\cdot3\]
\[\gcd(123,111)=3\]

Step 2: Rewrite

\[12=123-1\cdot111\]
\[3=111-9\cdot12\]

Step 3: Substitute

\[\begin{aligned}3&=111-9\cdot12\\&=111-9\cdot(123-1\cdot11)\\&=-9\cdot123+10\cdot111\end{aligned}\]

==Multiplicative Inverses==

\[ \forall a\in{\mathbf Z}_m,m>1,\gcd(a,m)=1 \]
\[ \exists! b,ab\equiv1\bmod m \]

Example: \(a=4,m=9\)

Step 1: Linear Combination

\[1=9-2\cdot4\]

Step 2:

\[-2\equiv7\bmod9\]

Linear Congruences

\[ ax\equiv b\bmod m, \gcd(a,m)=1,x=? \]
\[ a^{-1}ax\equiv a^{-1}b\bmod m \]

If \(\gcd(a,m)\neq1\), multi solutions or no solution

Chinese Remainder Theorem

\[ \forall x,y\in\set{m_1,m_2,\cdots,m_n}, \gcd(x,y)=1 \]
\[ \begin{aligned} x\equiv a_1&\bmod m_1 \\ x\equiv a_2&\bmod m_2 \\ \vdots \\ x\equiv a_n&\bmod m_n \end{aligned} \]
\[ m=m_1m_2\cdots m_n \]
\[ M_k=\frac m{m_k}, k=1,2,\dots,n \]
\[ \forall\gcd(m_k,M_k)=1,\ y_kM_k\equiv1\bmod m_k \]
\[ x=a_1M_1y_1+a_2M_2y_2+\cdots+a_nM_ny_n \]
\[ x\equiv a_1\cdot m_1\cdot m_1^{-1}+a_2\cdot m_2\cdot m_2^{-1}+\cdots+a_n\cdot m_n\cdot m_n^{-1} \bmod m \]

Repeated Squaring Method

Example: evaluate \(2048^{13}\bmod2050\)

\[\begin{aligned}2048^{2^0}\bmod2050&=2048\\2048^{2^1}\bmod2050&=4\\2048^{2^2}\bmod2050&=16\\2048^{2^3}\bmod2050&=256\\\end{aligned}\]
\[13=2^0+2^2+2^3\]
\[2048^{13}\equiv2048^{2^3}\cdot2048^{2^2}\cdot2048^{2^0}\equiv2048\cdot16\cdot256\equiv8\bmod2050\]

==Fermat Little Theorem==

\[ \forall p\in{\mathbf P},p\nmid a \]
\[ a^{p-1}\equiv1\bmod p \]

Comments