Skip to content

Classic Control Quick Notes

Routh Stability Criterion

\[ c(s)=1s^5+2s^4+3s^3+4s^2+5s^1+6s^0 \]
\(s^5\) ==\(1\)== \(3\) ==\(5\)==
\(s^4\) ==\(2\)== \(4\) ==\(6\)==
\(s^3\) \(\begin{aligned}&-\frac12\begin{vmatrix}1&3\\2&4\end{vmatrix}\\=&-\frac12(1\times4-2\times3)\\=&3-\frac{1\times4}2\\=&1\end{aligned}\) ==\(\begin{aligned}&-\frac12\begin{vmatrix}1&5\\2&6\end{vmatrix}\\=&-\frac12(1\times6-2\times5)\\=&5-\frac{1\times6}2\\=&2\end{aligned}\)==
\(s^2\) \(4-\frac{2\times2}1=0\) \(6\)
\(s^1\) \(2\)
\(s^0\) \(6\)

Kharitonov Theorem

\[ {\mathcal P}=\set{a(s)=a_0s^n+a_1s^{n-1}+\cdots+a_{n-1}s+a_n\ |\ a_i\in[\underline{a_i}, \overline{a_i}]} \]

All members of \(\mathcal P\) are stable if and only if the following four polynomials are stable

\[ \begin{aligned} a_1(s)=\underline{a_0}s^n+\underline{a_1}s^{n-1}+\overline{a_2}s^{n-2}+\overline{a_3}s^{n-3}+\underline{a_4}s^{n-4}+\cdots\\ a_2(s)=\underline{a_0}s^n+\overline{a_1}s^{n-1}+\overline{a_2}s^{n-2}+\underline{a_3}s^{n-3}+\underline{a_4}s^{n-4}+\cdots\\ a_3(s)=\overline{a_0}s^n+\overline{a_1}s^{n-1}+\underline{a_2}s^{n-2}+\underline{a_3}s^{n-3}+\overline{a_4}s^{n-4}+\cdots\\ a_4(s)=\overline{a_0}s^n+\underline{a_1}s^{n-1}+\underline{a_2}s^{n-2}+\overline{a_3}s^{n-3}+\overline{a_4}s^{n-4}+\cdots\\ \end{aligned} \]

Prototype 2nd-Order System

\[ H(s)=\frac{k\omega_n^2}{s^2+2\zeta\omega_ns+\omega_n^2}=\frac{k(\sigma^2+\omega_d^2)}{(s+\sigma)^2+\omega_d^2} \]
\[ \begin{cases} t_r\approx\frac{1.8}{\omega_n} \\ t_p=\frac\pi{\omega_n\sqrt{1-\zeta^2}} = \frac\pi{\omega_d} \\ t_s\approx\frac3{\zeta\omega_n} = \frac3\sigma \end{cases} \]
\[ PO=\left(\frac{y(t_p)}{y(\infty)}-1\right)\times100\%=\exp\left(-\frac{\zeta\pi}{\sqrt{1-\zeta^2}}\right) \]
\[ FVT=H(0)=k \]

Bode's Sensitivity

In the “nominal” situation, we have the motor with DC gain = \(A\), and the overall transfer function, either open- or closed-loop, has some other DC gain (call it \(T\)).

\[ \hat A=A+\delta A \]
\[ \hat T=T+\delta T \]
\[ \delta T\approx\frac{{\rm d}T}{{\rm d}A}\delta A \]
\[ {\mathcal S}=\frac{\frac{\delta T}T}{\frac{\delta A}A}=\frac{\delta T\cdot A}{\delta A\cdot T}\approx\frac{{\rm d}T}{{\rm d}A}\cdot\frac AT \]

Root Locus

Standard Form:

\[ 1+KL(s)=0 \]

Change to standard form

\[ a(s)+Kb(s)=0 \]
\[ 1+K\cdot\frac{b(s)}{a(s)}=0 \]
Rule A n branches
Rule B starts at s = x, x, ...
Rule C ends at s = x, x, ...
Rule D Real locus: (-xx,-xx) U (-xx,-xx)
Rule E n - m =xx, l = 0,1,...,xx-1
Asymptotes = xxx°, xxx°
Rule F a(s)+Kb(s)=0
Routh Table => K∈(xx,xx)
j·w?, w=?

Comments